

MICROBIOLOGICAL EFFECTIVENESS OF MINERAL POT FILTERS

Phnom Penh, Cambodia - 05 June 2012

Chai Ratana, WaterSHED Joe Brown, LSHTM / WaterSHED Ngov Sina, WaterSHED Alice Wang, UNC Kaida Liang, WaterSHED Mark D. Sobsey, UNC / WaterSHED

Outline

- Introduction to mineral pot filters (MPFs)
- Purpose of our evaluation
- Methods
- Results and discussion
- WaterSHED-Cambodia Laboratory

Mineral Pot Filter Device

- Widespread Use: Common in Cambodia & across Asia.
- Countertop Ceramic Candle Filter
- 80% of 440 retail outlets surveyed by PATH sold MPFs. This demonstrates that market penetration of MPFs greatly exceeded other HWTS options in the market (B. McLaughlin, PATH)
- Product retail cost: China & Vietnam (\$15-\$50), Cambodia (\$21-\$45).

Mineral Pot Filter

Mineral Water Pot MWF-12

CE-S Ceramic Filter Cartridge

MS-1 Medical Stone Filter Cartridge

MS-5 5-stage Filter Cartridge

Background

1. Dubious marketing claims:

- Effectiveness against arsenic, pesticides, other chemicals
- Prevents cancer
- Boost sex drive and have other supernatural advantages

2. Unknown treatment effectiveness

- However, they are widely used across Cambodia
- No systematic testing, data or scientific characterization of performance available

3. Protect human health and consumers

Purpose of Evaluation

- Ability to remove microbes from water over long-term use, under realistic conditions and microbial performance testing by the WHO recommendation (WHO 2011)
- As necessary first step in a broader assessment of the potential current and future role of these uncharacterized devices
- To demonstrate and pilot our laboratory's capacity for microbiological testing according to the new WHO testing recommendations.
 - Brown, J. and Sobsey, M. 2011. *Evaluating household water treatment options: health-based targets and performance specifications*. Geneva: World Health Organization. ISBN: 978 92 4 154822 9. Available at www.who.int

Testing set up

- Used WHO (2011) performance testing recommendation in developing laboratory method (bacteria, virus, protozoa).
- 3 common MPFs in PP market in 2010 were tested in duplicate with 2 challenge waters
 - Dechlorinated Phnom Penh tap water (DTW): High quality sources with low dissolved matter.
 - Dechlorinated tap water + 1% sterile wastewater (DTWW)
- Approximately 10 liters of test waters/filter/day
- Monitoring performance over ~1500 liters total throughput per test filter.
- Reporting reductions as log₁₀ reductions

Testing Procedures:

- 1. Daily Dosing for each filter
- 1. Periodic Testing of influent and effluent water
- 3. Weekly cleaning of filters
- 4. Following Treatment: daily spiking of influent water
- 4. Collected samples from effluent (Tues., Weds, Thurs.)

DTW

SDS 100L

Model Bacterium, Virus, Surrogate protozoa

DTWW

SDS

100L

Model Bacterium, Virus, Surrogate protozoa

1% Sterilized Waste Water

F3DTWW

F2DTW

F1DTW

F3DTW

F1DTWW

F2DTWW

Experiment Design

Methods

All methods as recommended by the WHO guidelines:

Membrane filtration (USEPA 2002)

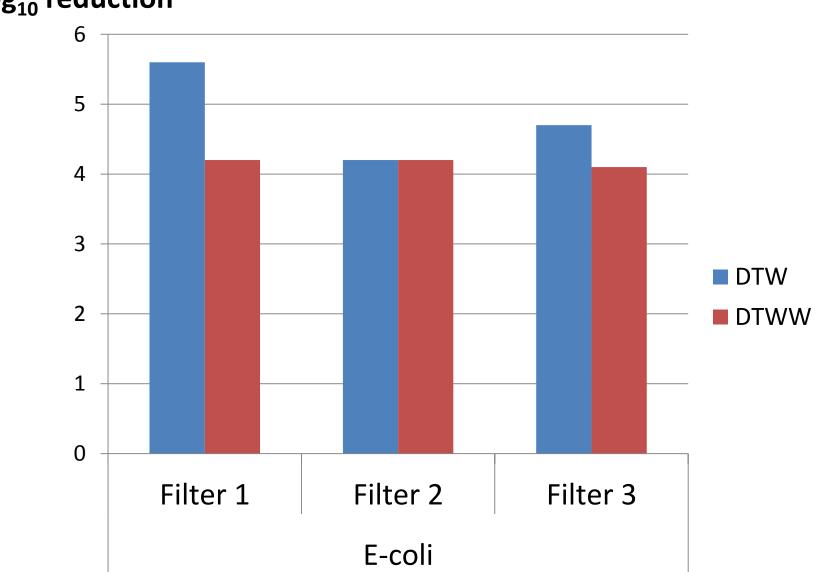
- **E. coli** : bacterial pathogens (*Salmonella* spp, *Shigella* spp, *Vibrio Cholera, Campylobacter* spp).
- **Bacillus Atrophaeus** : Surrogate for protozoa (*Cryptosporidium* oocysts)

Plaque Assay (Adams 1959, USEPA2001)

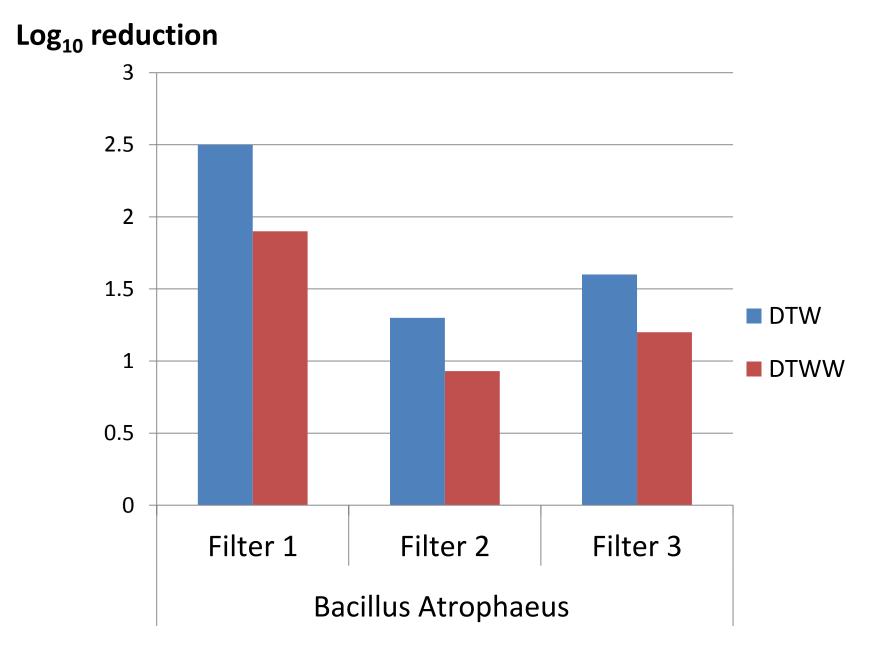
• **MS2** : Coliphage Bacteriophage which size, shape and other properties are similar to human enteric viruses (Noroviruses, infectious hepatitis and enteroviruses)

Data Analysis

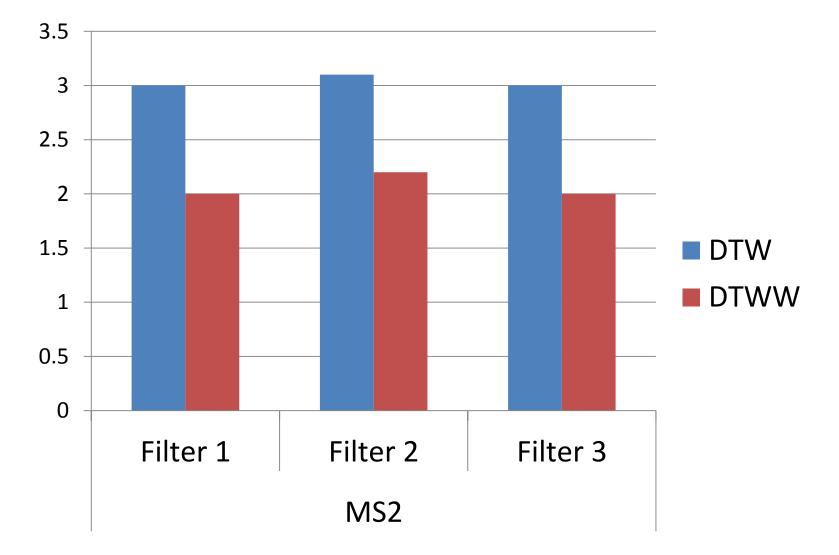
- Descriptive Statistics determined by a Shapiro-Wilk normality test.
- Interpretive Statistics: Using a *priori* significance level $\dot{\alpha}$ = 0.05
- Stata Version 8.1 (Stata Corporation, College Station, TX, USA)

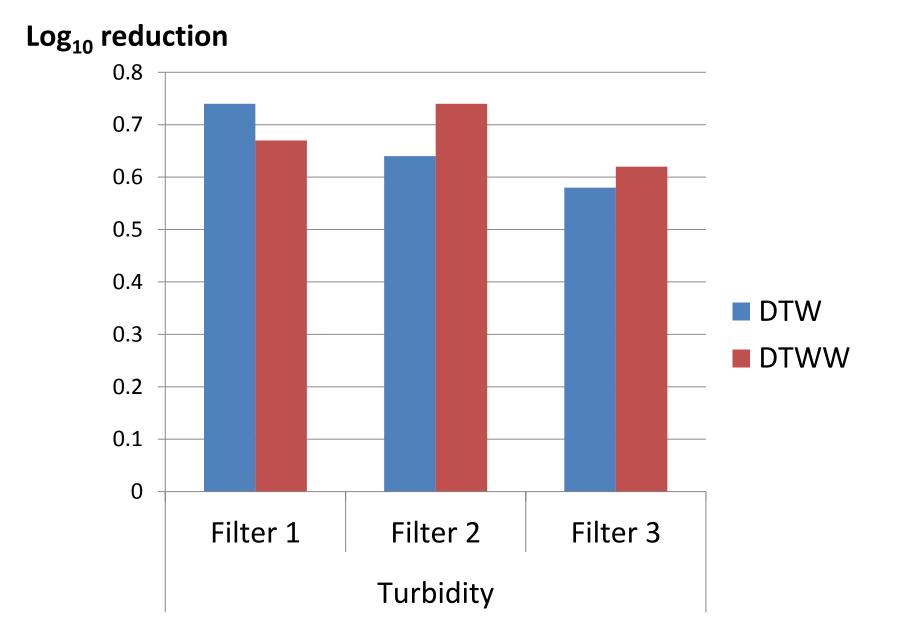

What are log₁₀ reductions?

- $1 \log_{10} = 90\%$
- 2 log₁₀ = 99%
- $3 \log_{10} = 99.9\%$
- $4 \log_{10} = 99.99\%$
- $5 \log_{10} = 99.999\%$
- And so on


WHO recommended reduction levels considered as "protective" are:

- Bacteria: 2 log₁₀
- Viruses: 3 log₁₀
- Protozoa: 2 log₁₀


		Log ₁₀ reduction over 1500 liters throughput, arithmetic means (95% CI)					
		Filter 1		Filter 2		Filter 3	
Parameter	n	Dechlor tap water	Dechlor tap water +1% ww	Dechlor tap water	Dechlor tap water +1% ww	Dechlor tap water	Dechlor tap water +1% ww
E. coli	49	5.6 (5.0 – 6.1)	4.2 (3.6 – 4.9)	4.2 (3.6 – 4.9)	4.2 (3.6 – 4.7)	4.7 (4.1 – 5.3)	4.1 (3.5 – 4.7)
MS2	28	3.0 (2.7 – 3.3)			2.2 (1.9 – 2.6)	3.0 (2.7 – 3.2)	2.0 (1.8 – 2.3)
B. atrophaeus	52	2.5 (1.9 – 3.1)	1.9 (1.4 – 2.4)	1.3 (1.0 – 1.6)	0.93 (0.76 – 1.1)	1.6 (1.3 – 2.0)	1.2 (0.86 – 1.5)
Turbidity	224	0.74 (0.67 – 0.80)	0.67 (0.61 – 0.74)		0.74 (0.69 – 0.80)	0.58 (0.49 – 0.66)	0.62 (0.57 – 0.68)



Log_{10} reduction

Log_{10} reduction

Data Results

- All filters reduced turbidity significantly from pre-treatment levels although mean turbidity did not exceed 5 NTU even in DTWW. Pre-treatment water pH did not change significantly following treatment.
- No large differences in performance between the three filters: they all provided microbiologically safer water, consistently.
- The three filters were as effective or more effective than other locally available drinking water treatment options, including ceramic filters (Brown and Sobsey 2010; Brown et al. 2008) and boiling (Brown and Sobsey 2012).
- In brief, at least one filter (Filter 1) could meet WHO recommended performance levels for the "Protective" level, but not across all potential water sources.

Remaining questions

- Effectiveness against chemicals?
 - RDI/RUPP bridge students have produced a report on this: MPFs NOT effective against arsenic or fluoride
- Toxicity of mineral stone elements?
 The filtration media remain uncharacterized
- Is regulation appropriate to limit manufacturers claims about effectiveness?
- Quality control of MPFs?
- New models on the market all the time, so cannot extend these results to ALL MPFs – continuous testing should be done

Conclusions

- MPFs are important because they demonstrate that the private sector can deliver effective water treatment products without subsidy
- The filters we tested (in the \$21 \$45 range) were at least as effective as CWPs
- More research is needed to answer remaining questions

WaterSHED-Cambodia laboratory

- Lab Supervisor: Chai Ratana
- Support from USAID, The University of North Carolina Chapel Hill and London School of Hygiene and Tropical Medicine
- In operation since April, 2009
- Services provided:
 - Comprehensive testing of household water treatment according to WHO standards
 - Microbiological testing services for water and food safety to private sector, NGO, and individual clients on a fee-for-service basis
 - Support to the water sector of Cambodia for health and well-being of the Cambodian people

Contact us!

WaterSHED-Cambodia

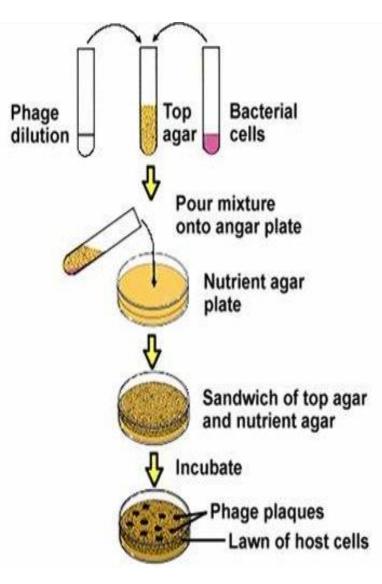
Address:

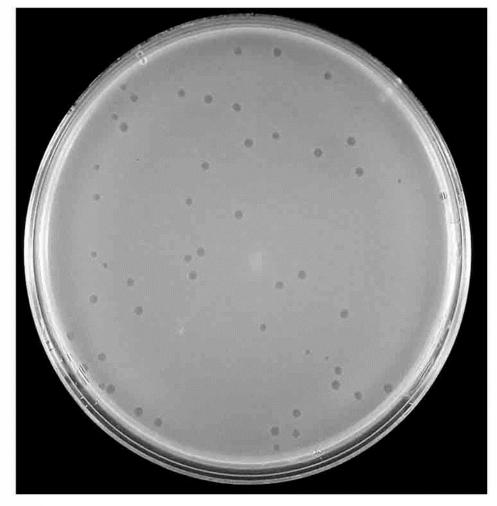
#39C Street 430 (corner of Street 476) Sangkat Toul Tompong II, Khan Chamkarmon Phnom Penh

Telephone:

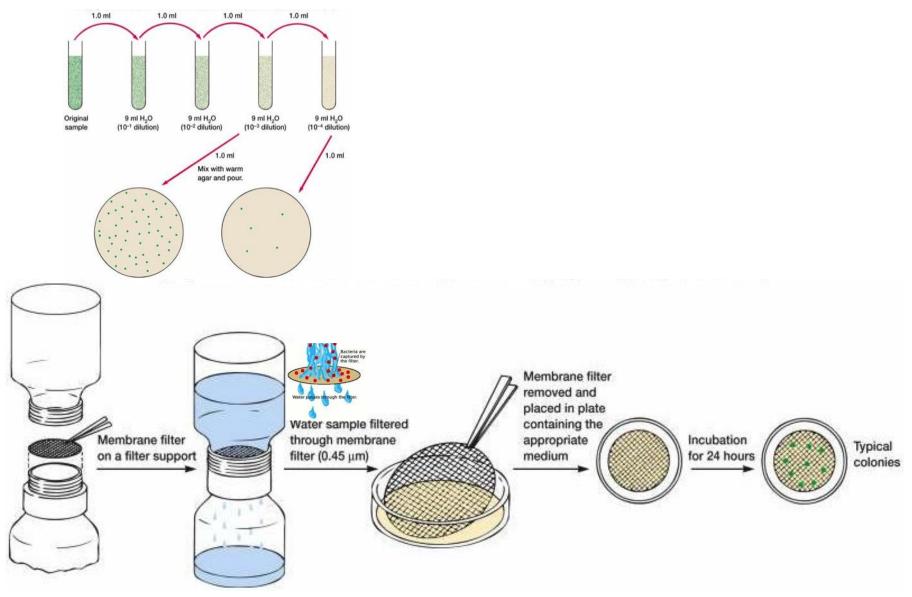
Mobile: 092 923548, Office: 017 897231 E-mail: ratana@watershedasia.org

Acknowledgments




- USAID/RDMA
- Funding by UNU & GIST Joint Programme (IERC) Gwangju Institute of Science & Technology for MPF testing
- The University of North Carolina Chapel Hill (Doug Wait Virology Lab Manager)
- PATH: market research on MPFs

Thank You!


Q&A

Plaque Assay

Membrane filtration

